_jsq_(1024,'/xyjj.jsp',-1,1940856777) 
function _nl_ys_check(){ var keyword = document.getElementById('showkeycode249966').value; if(keyword==null||keyword==""){ alert("请输入你要检索的内容!"); return false; } if(window.toFF==1) { document.getElementById("lucenenewssearchkey249966").value = Simplized(keyword ); }else { document.getElementById("lucenenewssearchkey249966").value = keyword; } var base64 = new Base64(); document.getElementById("lucenenewssearchkey249966").value = base64.encode(document.getElementById("lucenenewssearchkey249966").value); new VsbFormFunc().disableAutoEnable(document.getElementById("showkeycode249966")); return true; }
专家学者

基本情况:

姓名:朱岩

学历学位:博士研究生

职称:研究员

研究方向:短波红外光电探测器

邮箱:ttcow@qq.com

办公地点:29-318

所在团队名称:先进半导体器件与集成技术

可招收硕博专业:电科学硕,集成电路工程专硕

论文:

§1. Y. Zhu, et al., "Tensile strained nano-scale Ge/In0.16Ga0.84As heterostructure for tunnel field-effect transistor", ACS Appl. Mater. Interfaces 6, 4947 (2014).

§2. Y. Zhu, et al., “Growth, strain relaxation properties and high-κ dielectric integration of mixed-anion GaAs1-ySby metamorphic materials”, J. Appl. Phys. 116, 134304 (2014).

§3. Y. Zhu, et al, "Reliability studies on high-temperature operation of mixed As/Sb staggered gap tunnel FET material and devices", IEEE Trans. Device Mat. Rel. 14, 246 (2014).

§4. Y. Zhu, et al, “X-ray photoelectron spectroscopy analysis and band offset determination of CeO2 deposited on epitaxial (100), (110) and (111)Ge”, J. Vac. Sci. Technol. B 32, 011217 (2014).

§5. Y. Zhu and M. K. Hudait (Invited), "Low-power tunnel field effect transistors using mixed As and Sb based heterostructures", Nanotechnology Reviews 2, 637 (2013).

§6. Y. Zhu, et al, "Structural, morphological, and defect properties of metamorphic In0.7Ga0.3As/GaAs0.35Sb0.65 p-type tunnel field effect transistor structure grown by molecular beam epitaxy", J. Vac. Sci. Technol. B 31, 041203 (2013).

§7. Y. Zhu, et al, “Band offset determination of mixed As/Sb type-II staggered gap heterostructure for n-channel tunnel field effect transistor application”, J. Appl. Phys. 113, 024319 (2013).

§8. Y. Zhu, et al, “Defect assistant band alignment transition from staggered to broken gap in mixed As/Sb tunnel field effect transistor heterostructure”, J. Appl. Phys. 112, 094312 (2012).

§9. Y. Zhu, et al, “Structural properties and band offset determination of p-channel mixed As/Sb type-II staggered gap tunnel field-effect transistor structure”, Appl. Phys. Lett. 101, 112106 (2012).

§10. Y. Zhu, et al, “Role of InAs and GaAs terminated heterointerfaces at source/channel on the mixed As-Sb staggered gap tunnel FET structures grown by molecular beam epitaxy”, J. Appl. Phys. 112, 024306 (2012).

§11. Y. Zhu, et al, “Study of metamorphic InGaAs/GaAs quantum well laser materials grown on GaAs substrate by molecular beam epitaxy”, Optoelectronics Lett. 7, 325 (2011).

§12. Y. Zhu, et al, “GaAs-based long-wavelength InAs bilayer quantum dots grown by molecular beam epitaxy”, J. Semiconductors 32, 083001 (2011).

§13. M. Clavel, P. Goley, N. Jain, Y. Zhu, et al., “Strain-Engineered Biaxial Tensile Epitaxial Germanium for High- Performance Ge/InGaAs Tunnel Field-Effect Transistors”, IEEE J. Electron Devices Soc. 3, 184 (2015).

§14. M. K Hudait, M. Clavel, Y. Zhu, et al., “Integration of SrTiO3 on Crystallographically Oriented Epitaxial Germanium for Low-Power Device Applications”, ACS Appl. Mater. Inter. 7, 5471 (2015).

§15. J. S. Liu, Y. Zhu, et al., “Heterointerface engineering of broken-gap InAs/GaSb multilayer structures”, ACS Appl. Mater. Inter. 7, 2512 (2015).

§16. M. K. Hudait, Y. Zhu, et al., “Mixed-anion GaAs1−ySby graded buffer heterogeneously integrated on Si by molecular beam epitaxy”, Appl. Phys. Express 8, 025501 (2015).

§17. M. K. Hudait, M. Clavel, P. Goley, N. Jain, Y. Zhu, “Heterogeneous integration of epitaxial Ge on Si using AlAs/GaAs buffer architecture: Suitability for low-power fin field-effect transistors”, Scientific reports (2014).

§18. B. Rajamohanan, D. Mohata, Y. Zhu, et al, “Design, fabrication and analysis of P-channel Arsenide/Antimonide Hetero-junction Tunnel Transistors”, J. Appl. Phys. 115, 044502 (2014).

§19. N. Jain, Y. Zhu, et al, “Interfacial band alignment and structural properties of nanoscale TiO2 high-k gate dielectric for integration with epitaxial crystallographic oriented germanium”, J. Appl. Phys. 115, 024303 (2014).

§20. M. Li, Y. Yu, J. He, L. Wang, Y. Zhu, et al, “In situ accurate control of 2D-3D transition parameters for growth of low-density InAs/GaAs self-assembled quantum dots”, Nanoscale Res. Lett. 8, 86 (2013).

§21. M. K. Hudait, Y. Zhu, et al, “BaTiO3 Integration with Nanostructured Epitaxial (100), (110), and (111) Germanium for Multifunctional Devices”, ACS Appl. Mater. Interfaces 5, 11446 (2013).

§22. M. K. Hudait, Y. Zhu, et al, "Quasi-zero lattice mismatch and band alignment of BaTiO3 on epitaxial (110)Ge", J. Appl. Phys. 114, 024303 (2013).影响因子:2.546

§23. J. Wang, G. Wang, Y. Xu, J. Xing, W. Xiang, B. Tang, Y. Zhu, et al, “Molecular beam epitaxy growth of high electron mobility InAs/AlSb deep quantum well structure”, J. Appl. Phys. 114, 013704 (2013).

§24. M. K. Hudait, Y. Zhu, et al, "Structural and band alignment properties of Al2O3 on epitaxial Ge grown on (100), (110) and (111)A GaAs substrates by molecular beam epitaxy", J. Appl. Phys. 113, 134311 (2013).

§25. M. K. Hudait and Y. Zhu, "Energy band alignment of atomic layer deposited HfO2 oxide film on epitaxial (100)Ge, (110)Ge and (111)Ge layers", J. Appl. Phys. 113, 114303 (2013).

§26. M. K. Hudait, Y. Zhu, et al, "Ultra-high frequency photoconductivity decay in GaAs/Ge/GaAs double heterostructure grown by molecular beam epitaxy", Appl. Phys. Lett. 102, 093119 (2013).

§27. M. K. Hudait, Y. Zhu, et al, "Energy band alignment of atomic layer deposited HfO2 on epitaxial (110)Ge grown by molecular beam epitaxy", Appl. Phys. Lett. 102, 093109 (2013).

§28. M. K. Hudait, Y. Zhu, et al,"Structural, morphological, and band alignment properties of GaAs/Ge/GaAs heterostructures on (100), (110) and (111)A GaAs substrates", J. Vac. Sci. Technol. B 31, 011206 (2013).

§29. M. K. Hudait, Y. Zhu, et al, "In-situ grown Ge in an arsenic-free environment for GaAs/Ge/GaAs heterostructures on off-oriented (100)GaAs substrates using molecular beam epitaxy", J. Vac. Sci. Technol. B 30, 051205 (2012).

§30. Y. Yu, M. Li, J. He, Y. Zhu, et al, “Photoluminescence study of low density InAs quantum clusters grown by molecular beam epitaxy”, Nanotechnology 23, 065706 (2012).

§31. J. F. He, H. L. Wang, X. J. Shang, M. F. Li, Y. Zhu, et al, “GaAs-based long-wavelength InAs quantum dots on multi-step-graded InGaAs metamorphic buffer grown by molecular beam epitaxy”, J. Phys. D 44, 335102 (2011).

§32. X. J. Shang, J. F. He, H. L. Wang, M. F. Li, Y. Zhu, et al, “Effect of built-in electric field in photovoltaic InAs quantum dot embedded GaAs solar cell”, Appl. Phys. A 103, 335 (2011).

§33. J. He, X. Shang, M. Li, Y. Zhu, et al, “Influence of growth temperatures on the quality of InGaAs/GaAs quantum well structure grown on Ge substrate by molecular beam epitaxy”, J. Semiconductors 32, 043004 (2011).

§34. J. F. He, Z. C. Niu, X. Y. Chang, H. Q. Ni, Y. Zhu, et al, “Molecular beam epitaxy growth of GaAs on an offcut Ge substrate”, Chinese Physics B 20, 018102 (2011).

专利:

1. US Patent 9679762, “Access Conductivity Enhanced High Electron Mobility Transistor”, 2015-03.

2. US Patent 11038080, “Thin-film semiconductor optoelectronic device with textured front and/or back surface prepared from etching”, 2021-06